Free-knot linear splines: Value of asymptotic theory

Another recent arXival proposes to use a local linear regression as a type of ‘non-parametric’ Bayesian model, although this time the location of the break points is learnt during fitting, which creates a free-knot linear spline model.  The application here is reconstructions of the primordial power spectrum.  Again I don’t generally advocate for such models, but if I did I would want to see a hierarchical prior structure that could promote shrinkage, such as towards a data-driven mean slope and neighbouring slope difference distribution.  Interestingly it seems that the asymptotics literature has something to say on this topic: in particular, that the prior choice on knot locations should not be a Poisson process (such as the independent draws from the Uniform distribution adopted in this arXival), rather it should favour a regular spacing (see Remark 5 in Belitser & Serra).

This entry was posted in Uncategorized. Bookmark the permalink.

Leave a Reply

Fill in your details below or click an icon to log in: Logo

You are commenting using your account. Log Out /  Change )

Google photo

You are commenting using your Google account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s